Preprint
Article

Calculation of the Flux Density Function for Protein Crystals from Small Scale Settling and Filtration Experiments

Altmetrics

Downloads

203

Views

257

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

19 May 2021

Posted:

20 May 2021

You are already at the latest version

Alerts
Abstract
Development and engineering of protein crystals regarding mechanical stability and crystallizability occurs on a small scale. Later in the process chain of industrial production however, filtration properties are important to separate the crystals from mother liquor. Many protein crystals are sensitive to mechanical stress which is why it is important to know the filtration behavior early on. In this study we analyze settling and filtration behavior of isometric, rod-like and needle shaped lysozyme and rod-like alcohol dehydrogenase (ADH) crystals on a small scale using an optical analytical centrifuge. Needle shaped lysozyme and rod-like ADH crystals show compressible material behavior. With the results from settling and filtration experiments the flux density function is calculated and modeled which can be used to describe the whole settling and permeation process in dependency of the solids volume fraction. This is also an issue for simulations of industrial processes.
Keywords: 
Subject: Engineering  -   Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated