Preprint
Review

Systematic Review of Electricity Demand Forecast Using ANN-Based Machine Learning Algorithms

Altmetrics

Downloads

188

Views

297

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

19 May 2021

Posted:

21 May 2021

You are already at the latest version

Alerts
Abstract
The forecast of electricity demand has been a recurrent research topic for decades, due to its economical and strategic relevance. Several Machine Learning (ML) techniques have evolved in parallel with the complexity of the electric grid. This paper reviews a wide selection of approaches that have used Artificial Neural Networks (ANN) to forecast electricity demand, aiming to help newcomers and experienced researchers to appraise the common practices and to detect areas where there is room for improvement in the face of the current widespread deployment of smart meters and sensors, which yields an unprecedented amount of data to work with. The review looks at the specific problems tackled by each one of the selected papers, at the results attained by their algorithms, and at the strategies followed to validate and compare the results. This way, it is possible to highlight some peculiarities and algorithm configurations that seem to consistently outperform others in specific settings.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated