Preprint
Article

Comparative Simulations of Conductive Nitrides as alternative Plasmonic Nanostructures for Solar Cells

Altmetrics

Downloads

153

Views

252

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

17 May 2021

Posted:

21 May 2021

You are already at the latest version

Alerts
Abstract
Particle layers employing conductive transition metal nitrides have been proposed as possible alternative plasmonic materials for photovoltaic applications due to their reduced losses compared to metal nanostructures. We critically compare the photocurrent gain due to an additional layer made of nanopillars of nitrides with other material classes obtained in an already highly optimized doped c-Si baseline solar cell with accurate doping profile from measurements. A relative photocurrent gain with respect to the baseline cell of on average 5% to 10% is observed, with a few cases achieving around 30% gain. While the local field enhancement is moderate resonances for nitrides spread over the whole UV-VIS range. For some nitrides, the shading effect remains a problem similar as for metals, but others behave more like dielectric scatterers with high photocurrent gain.
Keywords: 
Subject: Physical Sciences  -   Optics and Photonics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated