Preprint
Article

Development and Analysis of the Novel Hybridization of a Single Flash Geothermal Power Plant with Biomass Driven sCO2-steam Rankine Combined Cycle

Altmetrics

Downloads

240

Views

272

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

21 May 2021

Posted:

24 May 2021

You are already at the latest version

Alerts
Abstract
This study investigates the hybridization scenario of a single flash geothermal power plant with a biomass driven sCO2-steam Rankine combined cycle where a solid local biomass source, olive residue, is used as a fuel. The hybrid power plant is modeled using the simulation software EB-SILON®Professional. A topping sCO2 cycle is specifically chosen for its potential for flexible elec-tricity generation. A synergy between the topping sCO2 and bottoming steam Rankine cycles is achieved by a good temperature match between the coupling heat exchanger where the waste heat from the topping cycle is utilized in the bottoming cycle. The high temperature heat addition problem common sCO2 cycles is also eliminated by utilizing the heat in the flue gas in the bottoming cycle. Combined cycle thermal efficiency and biomass to electricity conversion efficiency of 24.9% and 22.4% are achieved, respectively. The corresponding fuel consumption of the hybridized plant is found as 2.2 kg/s.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated