Preprint
Article

COVID-19 Diagnosis from chest CT Scans: A Weakly Supervised CNN-LSTM Approach

Altmetrics

Downloads

389

Views

520

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

21 May 2021

Posted:

25 May 2021

You are already at the latest version

Alerts
Abstract
Advancements in deep learning and availability of medical imaging data have led to use of CNN based architectures in disease diagnostic assisted systems. In spite of the abundant use of reverse transcription-polymerase chain reaction (RT-PCR) based tests in COVID-19 diagnosis, CT images offer an applicable supplement with its high sensitivity rates. Here, we study classification of COVID-19 pneumonia (CP) and non-COVID-19 pneumonia (NCP) in chest CT scans using efficient deep learning methods to be readily implemented by any hospital. We report our deep network framework design that encompasses Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory (biLSTM) architectures. Our study achieved high specificity (CP: 98.3%, NCP: 96.2% Healthy: 89.3%) and high sensitivity (CP: 84.0%, NCP: 93.9% Healthy: 94.9%) in classifying COVID-19 pneumonia, non-COVID-19 pneumonia and healthy patients. Next, we provide visual explanations for the CNN predictions with gradient-weighted class activation mapping (Grad-CAM). The results provided a model explainability by showing that Ground Glass Opacities (GGO), indicators of COVID-19 pneumonia disease, were captured by our CNN network. Finally, we have implemented our approach in three hospitals proving its compatibility and efficiency.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated