Preprint
Short Note

Short Note on Comparing Stacking Modelling Versus Cannistraci-Hebb Adaptive Network Automata for Link Prediction in Complex Networks

Altmetrics

Downloads

281

Views

365

Comments

0

Submitted:

27 May 2021

Posted:

28 May 2021

You are already at the latest version

Alerts
Abstract
Link prediction is an iconic problem in complex networks because deals with the ability to predict nonobserved existing or future parts of the network structure. The impact of this prediction on real applications can be disruptive: from prediction of covert links between terrorists in their social networks to repositioning of drugs in molecular diseasome networks. Here we compare: (1) an ensemble meta-learning method (Ghasemian et al.), which uses an artificial intelligence (AI) stacking strategy to create a single meta-model from hundreds of other models; (2) a structural predictability method (SPM, Lü et al.), which relies on a theory derived from quantum mechanics and does not assume any model; (3) a modelling rule named Cannistraci-Hebb (CH, Muscoloni et al.), which relies on one brain-bioinspired model adapting to the intrinsic network structure.We conclude that brute-force stacking of algorithms by AI does not perform better than (and is often significantly outperformed by) SPM and one simple brain-bioinspired rule such as CH. This agrees with the Gödel incompleteness: stacking is optimal but incomplete, you cannot squeeze out more than what is already in your features. Hence, we should also pursue AI that resembles human-like physical ‘understanding’ of simple generalized rules associated to complexity. The future might be populated by AI that ‘steals for us the fire from Gods’, towards machine intelligence that creates new rules rather than stacking the ones already known.
Keywords: 
Subject: Physical Sciences  -   Mathematical Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated