Preprint
Article

A Fluorescent Real-time Plaque Assay Enables Single-cell Analysis of Virus-induced Cytopathic Effect by Live Cell Imaging

Altmetrics

Downloads

267

Views

266

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

31 May 2021

Posted:

01 June 2021

You are already at the latest version

Alerts
Abstract
Conventional plaque assays rely on the use of overlays to restrict viral infection allowing the formation of distinct foci that grow in time as the replication cycle continues leading to counta-ble plaques that are visualized with standard techniques such as crystal violet, neutral red or immunolabeling. This classical approach takes several days until large enough plaques can be visualized and counted with some variation due to subjectivity in plaque recognition. Since plaques are clonal lesions produced by virus-induced cytopathic effect, we applied DNA fluores-cent dyes with differential cell permeability to visualize them by live cell imaging. We could observe different stages of that cytopathic effect corresponding to an early wave of cells with chromatin-condensation followed by a wave of dead cells with membrane permeabilization within plaques generated by different animal viruses. This approach enables an automated plaque identification using image analysis to increase single plaque resolution compared to crystal violet counterstaining and allows its application to plaque tracking and plaque reduction assays to test compounds for both antiviral and cytotoxic activities. This fluorescent real-time plaque assay sums to those next-generation technologies by combining this robust classical method with modern fluorescence microscopy and image analysis approaches for future applica-tions in virology.
Keywords: 
Subject: Biology and Life Sciences  -   Virology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated