Preprint
Article

Revealing Antibiotic-Tolerance of the Mycobacterium smegmatis Xanthine/Uracil Permease Mutant Using Microfluidics and Single-Cell Analysis

Altmetrics

Downloads

271

Views

345

Comments

1

This version is not peer-reviewed

Submitted:

01 June 2021

Posted:

02 June 2021

You are already at the latest version

Alerts
Abstract
To reveal rare phenotypes in bacterial populations conventional microbiology tools should be advanced to generate rapid, quantitative, accurate and high-throughput data. The main drawbacks of widely used traditional methods for antibiotic studies include low sampling rate and averaging data for population measurements. To overcome these limitations microfluidic-microscopy systems have great promise to produce quantitative single-cell data with high sampling rates. Using Mycobacterium smegmatis cells we applied both conventional assays and a microfluidic-microscopy method to reveal antibiotic-tolerance mechanisms of wild type and the msm2570::Tnmutant cells. Our results revealed that the enhanced antibiotic tolerance mechanism of the msm2570::Tn mutant was due to the low number of lysed cells during the antibiotic exposure compared with wild-type cells. This is the first study that characterized the antibiotic-tolerance phenotype of the msm2570::Tn mutant that has a transposon insertion in the msm2570 gene encoding a putative xanthine/uracil permease, which enrolls in uptake of nitrogen compound during nitrogen limitation. The experimental results indicate that the msm2570::Tn mutant can be further interrogated to reveal antibiotic killing mechanisms, in particularly, antibiotics those targets cell wall integrity.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated