Preprint
Article

Sentiment Analysis Techniques Applied to Raw-Text Data from a CSQ-8 Questionnaire About Mindfulness in Times of Covid-19 to Improve Strategy Generation

Altmetrics

Downloads

243

Views

268

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

01 June 2021

Posted:

02 June 2021

You are already at the latest version

Alerts
Abstract
The aim of this study was to build a tool to analyze, using artificial intelligence, the sentiment perception of users who answered two questions from the CSQ – 8 questionnaires with raw Spanish free-text. Their responses are related to mindfulness, which is a novel technique used to control stress and anxiety caused by different factors in daily life. As such, we proposed an online course where this method was applied in order to improve the quality of life of health care professionals in COVID 19 pandemic times. We also carried out an evaluation of the satis-faction level of the participants involved, with a view to establishing strategies to improve fu-ture experiences. To automatically perform this task, we used Natural Language Processing (NLP) models such as swivel embedding, neural networks and transfer learning, so as to classify the inputs into the following 3 categories: negative, neutral and positive. Due to the lim-ited amount of data available - 86 registers for the first and 68 for the second - transfer learning techniques were required. The length of the text had no limit from the user’s standpoint, and our approach attained a maximum accuracy of 93.02 % and 90.53 % respectively based on ground truth labeled by 3 experts. Finally, we proposed a complementary analysis, using com-puter graphic text representation based on word frequency, to help researchers identify relevant information about the opinions with an objective approach to sentiment. The main conclusion drawn from this work is that the application of NLP techniques in small amounts of data using transfer learning is able to obtain enough accuracy in sentiment analysis and text classification stages
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated