We introduce a number of techniques in quantitative convergent-beam electron diffraction under development by our group and discuss the basis for measuring interatomic electrostatic potentials (and therefore also electron densities), localised at sub-nanometre scales, with sufficient accuracy and precision to map chemical bonds in and around nanostructures in nanostructured materials. This has never before been possible as experimental measurements of bonding in quantum crystallography have hitherto always been restricted to homogeneous single-phased crystals.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.