Preprint
Communication

Use of the Lateral Flow Immunoassay to Characterize SARS-CoV-2 RBD-Specific Antibodies and Their Ability to React with the UK, SA and BR P.1 Variant RBDs

Altmetrics

Downloads

528

Views

594

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

01 June 2021

Posted:

02 June 2021

You are already at the latest version

Alerts
Abstract
Identifying anti-spike antibodies that exhibit strong neutralizing activity against current dominant circulating variants and antibodies that are escaped by these variants have important implications in the development of therapeutic and diagnostic solutions as well as in improving understanding of the humoral response to SARS-CoV-2 infection. We characterized seven anti-RBD monoclonal antibodies for their binding activity, pairing capability and neutralization activity to SARS-CoV-2 and three variant RBDs (UK, SA and BR P.1) via lateral flow immunoassays. The results allowed us to group these antibodies into three distinct epitope bins. Our studies showed that two antibodies had broadly potent neutralizing activity against SARS-CoV-2 and these variant RBDs and that one antibody did not neutralize the SA and BR P.1 RBDs. The antibody escaped by the SA and BR P.1 RBDs retained binding activity to SA and BR P.1 RBDs but was unable to induce neutralization. Further, we demonstrated that the lateral flow immunoassay can be a rapid and effective tool for antibody characterization, including epitope classification and antibody neutralization kinetics. From these studies, the potential contributions of the mutations (N501Y, E484K and K417N/T) contained in these variants’ RBDs on antibody pairing capability, neutralization activity and therapeutic antibody targeting strategy are discussed.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated