Preprint
Article

Generalized Nonlinear Constitutive Law Applied to Steel Trapezoidal Sheet Plates

Altmetrics

Downloads

186

Views

226

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

04 June 2021

Posted:

07 June 2021

You are already at the latest version

Alerts
Abstract
In the paper, a modified nonlinear finite element method for analysis of trapezoidal plates geometrically reduced to shallow-shell Reissner-Mindlin formulation is presented. Due to the method proposed the complex plate cross-section and nonlinear materials may be modelled and no implementation of advanced constitutive law via user subroutines is needed. The generalized nonlinear constitutive law is used to update the stiffness of the plate element. The method enables modeling of complicated cross-sections, such as steel trapezoidal sheets, metal facing sandwich panels or reinforced concrete. Additionally, for those geometrically complex sections an advanced nonlinear material may be adopted. To verify the proposed method, a selected trapezoidal sheets were modeled in a commercial software as full 3D shell structures. By comparing displacements and forces, it was shown that both models behave almost identically, however, the simplified model has about 300-400 times less degrees of freedom, thus it is much more efficient.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated