Preprint
Article

Effect of Grit Blasting and Polishing Pretreatments on the Microhardness, Adhesion and Corrosion Properties of Electrodeposited Ni-W/SiC Nanocomposite Coatings on 45 Steel Substrate

Altmetrics

Downloads

385

Views

292

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

06 June 2021

Posted:

07 June 2021

You are already at the latest version

Alerts
Abstract
In this study, grit blasting pretreatment was used to improve the adhesion and corrosion resistance and microhardness of Ni-W/SiC nanocomposite coatings fabricated using conventional electrodeposition technique. Prior to deposition, grit blasting and polishing (more commonly used) pretreatment were used to prepare the surface of the substrate and the 3D morphology of the pretreated substrates was characterized using laser scanning confocal microscopy. The coatings surface and the cross section morphology were analyzed using scanning electron microscopy (SEM). The chemical composition, crystalline structure, microhardness, adhesion, and the corrosion behavior of the deposited coatings were characterized using energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), microhardness tester, scratch tester and electrochemical workstation, respectively. The results indicated that the grit blasting and SiC addition, improved the microhardness, adhesion and corrosion resistance. The Ni-W-SiC nanocomposites pretreated by grit blasting exhibited the best adhesion strength, up to 36.5 ± 0.75 N. Its hardness was the highest and increased up to 673 ± 5.47Hv and its corrosion resistance was the highest compared to the one pretreated by polishing.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated