Preprint
Article

A Hybrid Model for Similarity Measurement of Twitter Profiles

Altmetrics

Downloads

965

Views

757

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

09 February 2022

Posted:

17 February 2022

You are already at the latest version

Alerts
Abstract
Social media platforms have been entirely an undeniable part of the lifestyle for the past decade. Analyzing the information being shared is a crucial step to understanding human behavior. Social media analysis aims to guarantee a better experience for the user and risen user satisfaction. For deriving any further conclusion, first, it is necessary to know how to compare users. In this paper, a hybrid model has been proposed to measure Twitter profiles’ similarity and quantifies the likeness degree of profiles by calculating features considering users’ behavioral habits. For this, first, the timeline of each profile has been extracted using the official TwitterAPI. Then, in parallel, three aspects of a profile are deliberated. Behavioral ratios are time-series-related information showing the consistency and habits of the user. Dynamic time warping has been utilized to compare the behavioral ratios of two profiles. Next, the audience network is extracted for each user, and for estimating the similarity of two sets, Jaccard similarity is used. Finally, for the Content similarity measurement, the tweets are preprocessed respecting the feature extraction method; TF-IDF and DistilBERT for feature extraction are employed and then compared using the cosine similarity method. Results have shown that TF-IDF has slightly better performance; therefore, the more straightforward solution is selected for the model. Similarity level of different profiles. As in the case study, a Random Forest classification model was trained on almost 20000 users revealed a 97.24% accuracy. This comparison enables us to find duplicate profiles with nearly the same behavior and content.
Keywords: 
Subject: Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated