Preprint
Article

Analysis of Heat Absorption and Collection Based on Solid Structures Collector

Altmetrics

Downloads

824

Views

273

Comments

0

This version is not peer-reviewed

Submitted:

07 June 2021

Posted:

08 June 2021

You are already at the latest version

Alerts
Abstract
A solid structure, such as a road, building wall or envelop, used as a solar collector is considered an effective and new way to use renewable energy. This paper focused on the temperature characteristics of four structures exposed to sunshine: asphalt, red brick, composite cement and concrete road slab. Furthermore, the collected heat based on a hydraulic system was investigated experimentally. For the four structure slabs, their temperature differences are due to solar radiation absorption varied greatly by the material’s heat absorptance and color. Through the test, asphalt slab attained the highest temperature and had the weakest reflection among the structures. Compared with the others, the temperature of the asphalt slab was greater by 8.1%, 14.9% and 16.4% than the brick, composite cement and concrete, respectively. The reflection intensity growth ratio was defined and indicates the growth potential for absorbing radiation in the solid slab surface. From the experiments, it was concluded that a suitable selection of road materials can greatly improve the thermal absorption, conduction and penetration into the solid slab. The collected heat capability was approximately 250 W/m2 to 350 W/m2 in the natural summer condition. A black coating or a surface modification can collect more heat, reaching greater than 250 W/m2. The solar collecting heat efficiency with a surface configuration of the road slab can reach above 30% in the summer time.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated