Preprint
Article

Transition Modeling for Low Pressure Turbines Using Computational Fluid Dynamics Driven Machine Learning

Altmetrics

Downloads

260

Views

284

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

16 June 2021

Posted:

17 June 2021

You are already at the latest version

Alerts
Abstract
Existing Reynolds Averaged Navier-Stokes based transition models do not accurately predict separation induced transition for low pressure turbines. Therefore, in this study, a novel framework based on computational fluids dynamics driven machine learning coupled with multi-expression and multi-objective optimization is explored to develop models which can improve the transition prediction for the T106A low pressure turbine at an isentropic exit Reynolds number of Re2is=100,000. Model formulations are proposed for the transfer and laminar eddy viscosity terms of the laminar kinetic energy transition model using seven non-dimensional pi groups. The multi-objective optimization approach makes use of cost functions based on the suction-side wall-shear stress and the pressure coefficient. A family of solutions is thus developed, whose performance is assessed using Pareto analysis and in terms of physical characteristics of separated-flow transition. Two models are found which bring the wall-shear stress profile in the separated region at least two times closer to the reference high-fidelity data than the baseline transition model. As these models are able to accurately predict the flow coming off the blade trailing edge, they are also able to significantly enhance the wake-mixing prediction over the baseline model.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated