Irrigation water management components evaluation is mandatory for sustainable irrigated agriculture production in the era of water scarcity. In this research spatio-temporal distribution of irrigation water components were evaluated at canal command area in Indus Basin Irrigation System (IBIS) using remote sensing based geo-informatics approach. Satellite derived MODIS product-based Surface Energy Balance Algorithm for Land (SEBAL) was used for the estimation of the Actual Evapotranspiration (ETa). Satellite derived SEBAL based ETa was calibrated and validated using the ground data-based advection aridity method (AA). Statistical analysis of the SEBAL based ETa and AA shows the mean 87.1 mm and 47.9 mm and, 100 mm and 77 mm, Standard deviation of 27.7 mm and 15.9 mm and, 34.9 mm and 16.1 mm, R of 0.93 and 0.94, NSE of 0.72 and 0.85, PBIASE -12.9 and -4.4, RMSE 34.9 and 5.76 for the Kharif and Rabi season, respectively. Rainfall data was acquired from the Tropical Rainfall Measuring Mission (TRMM). TRMM based rainfall was calibrated with the point observatory data of the Pakistan Metrological Department Stations. Canal water data was collected from the Punjab Irrigation department for the assessment of canal water availability. Water The water balance approach was applied in the unsaturated zone for the quantification of the gross and net Groundwater irrigation. Mmonthly variation of ETa with the minimum average value of 63.3 mm in January and the maximum average value of 110.6 mm in August was found. While, the average annual of four cropping years (2011-12 to 2014-15) ETa was found 899 mm. Average of the sum of Net Canal Water Use (NCWU) and Rainfall during the study period of four years was only 548 mm (36% of ETa) and this resulted the 739.6 mm of groundwater extraction. While the annual based variation in groundwater extraction of 632 mm and 780 mm was found. Seasonal analysis revealed 39% and 61% of groundwater extraction proportion during Rabi and Kharif season, respectively. The variation in four cropping year’s monthly groundwater extraction was found 28.7 mm to 120.3 mm. This variation was high in the 2011-12 to 2012-13 cropping year (0 mm to 148.7 mm), dependent upon the occurrence of rainfall and crop phenology. Net groundwater irrigation, estimated after incorporating the efficiencies was 503 mm year-1 on average for the four cropping years.
Keywords:
Subject: Engineering - Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.