Preprint
Article

Development of a Fuzzy Variable Rate Irrigation Control System Based on Remote Sensing Data to Fully Automate Center Pivots

Altmetrics

Downloads

319

Views

317

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

22 June 2021

Posted:

23 June 2021

You are already at the latest version

Alerts
Abstract
Growing agricultural demands for the global population are unlocking the path to developing innovative solutions for efficient water management. Herein, an intelligent variable rate irrigation system (fuzzy-VRI) is proposed for rapid decision-making to achieve optimized irrigation in various delimited zones. The proposed system automatically creates irrigation maps for a center pivot irrigation system for a variable-rate application of water. Primary inputs are spatial imagery on remotely sensed soil moisture (SSM), soil adjusted vegetation index (SAVI), canopy temperature (CT), and nitrogen content (NI). To eliminate localized issues with soil characteristics, we used the crop nitrogen content map to provide a focused insight on issues related to water shortage. The system relates these inputs to set reference values for the rotation speed controllers and individual openings of each central pivot sprinkler valve. The results showed that the system can detect and characterize the spatial variability of the crop and further, the fuzzy logic solved the uncertainties of an irrigation system and defined a control model for high-precision irrigation. The proposed approach is validated through the comparison between the recommended irrigation and actual irrigation at two field sites, and the results showed that the developed approach gives an accurate estimation of irrigation with a reduction in the volume of irrigated water of up to 27% in some cases. Future research should implement the fuzzy-VRI real-time during field trials in order to quantify its effect on irrigation use, yield, and water use efficiency.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated