Preprint
Article

Cell Surface Phenotypic Diversity and Flocculation Gene Variability in Contaminant Industrial Fuel-Ethanol Yeast Strains Exhibiting Highly Foaming Phenotypes

Altmetrics

Downloads

260

Views

298

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

29 June 2021

Posted:

30 June 2021

You are already at the latest version

Alerts
Abstract
Many contaminant yeast strains able to survive inside fuel ethanol industrial vats show detrimental cell surface phenotypes, such as filamentation, invasive growth, flocculation, biofilm formation and excessive foam production. Previous studies have linked some of these phenotypes to the expression of FLO genes, and the presence of gene length polymorphisms causing the expansion of FLO gene size appears to result in stronger flocculation and biofilm formation phenotypes. We have performed here a molecular analysis of FLO1 and FLO11 gene polymorphisms present in contaminant strains of S. cerevisae from Brazilian fuel ethanol distilleries showing strong foaming phenotypes during fermentation. The size variability of these genes was correlated with cellular hydrophobicity, flocculation and highly foaming phenotypes in these yeast strains. Our results also show that deleting the major activator of FLO genes (the FLO8 gene) from the genome of a contaminant and highly foaming industrial strain avoids problematic foam formation, flocculation, invasive growth and biofilm production by the engineered (flo8∆::BleR / flo8Δ::kanMX) yeast strain. Thus, the characterization of highly foaming yeasts and the influence of FLO8 in this phenotype opens new perspectives for yeast strain engineering and optimization in the sugarcane fuel-ethanol industry.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated