Preprint
Article

Spherically Symmetric Exact Vacuum Solutions in Einstein-Aether Theory

Altmetrics

Downloads

234

Views

200

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

30 June 2021

Posted:

01 July 2021

You are already at the latest version

Alerts
Abstract
We study spherically symmetric spacetimes in Einstein-aether theory in three different coordinate systems, the isotropic, Painlev\`e-Gullstrand, and Schwarzschild coordinates, and present both time-dependent and time-independent exact vacuum solutions. In particular, in the isotropic coordinates we find a class of exact static solutions characterized bya single parameter $c_{14}$ in closed forms, which satisfies all the current observational constraints of the theory, and reduces to the Schwarzschild vacuum black hole solution in the decoupling limit ($c_{14} = 0$). However, as long as $c_{14} \not= 0$, a marginally trapped throat with a finite non-zero radius always exists, and in one side of it the spacetime is asymptotically flat, while in the other side the spacetime becomes singular within a finite proper distance from the throat, although the geometric area is infinitely large at the singularity. Moreover, the singularity is a strong and spacetime curvature singularity, at which both of the Ricci and Kretschmann scalars become infinitely large.
Keywords: 
Subject: Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated