Preprint
Article

Real-Time Quality Index to Control Data Loss in Real-Life Cardiac Monitoring Applications

Altmetrics

Downloads

372

Views

236

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 June 2021

Posted:

01 July 2021

You are already at the latest version

Alerts
Abstract
Wearable cardiac sensors pave the way to advanced cardiac monitoring applications based on heart rate variability (HRV). In real-life settings, heart rate (HR) measurements are subject to mo-tion artifacts that can be timely removed from the recordings. This leads to frequent data loss in the HR signal, especially for commercial devices based on photoplethysmography (PPG). The cur-rent study had two main goals: (i) to provide a white-box quality index that estimates the amount of missing samples in any piece of HR signal; and (ii) to quantify the impact of data loss on feature extraction in a PPG-based HR signal. This was done by comparing real-life recordings from com-mercial sensors featuring both PPG (Empatica E4) and ECG (Zephyr BioHarness 3). After an out-lier rejection process, our quality index was used to isolate portions of ECG-based HR signal that could be used as benchmark, to validate the output of Empatica E4 at the signal level and at the feature level. Our results showed high accuracy for estimating the mean HR, poor accuracy for short-term HRV features and moderate accuracy for longer-term HRV features. Levels of error could be substantially reduced by using our quality index to identify time windows with few or no missing data.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated