Preprint
Article

Topology Optimization of Large-Scale 3D Morphing Wingstructures

This version is not peer-reviewed.

Submitted:

01 July 2021

Posted:

02 July 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
This work proposes a systematic topology optimization approach to simultaneously design the morphing functionality and actuation in three-dimensional wing structures. The actuation is assumed to be a linear strain-based expansion in the actuation material and a three-phase material model is employed to represent structural and actuating materials, and void. To ensure both structural stiffness with respect to aerodynamic loading and morphing capabilities, the optimization problem is formulated to minimize structural compliance while morphing functionality is enforced by constraining a morphing error between actual and target wing shape. Moreover, a feature mapping approach is utilized to constrain and simplify actuator geometries. A trailing edge wing section is designed to validate the proposed optimization approach. Numerical results demonstrate that three-dimensional optimized wing sections utilize a more advanced structural layout to enhance structural performance while keeping morphing functionality than two-dimensional wing ribs. The work presents the first step towards systematic design of three-dimensional morphing wing sections.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

484

Views

663

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated