Preprint
Article

Smart Core and Surface Temperature Estimation Techniques for Health-conscious Lithium-ion Battery Management Systems: A Model-to-Model Comparison

Altmetrics

Downloads

688

Views

430

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

03 July 2021

Posted:

05 July 2021

You are already at the latest version

Alerts
Abstract
Estimation of core and surface temperature is one of the crucial functionalities of the lithium-ion Battery Management System (BMS) towards providing effective thermal management, fault detection and operational safety. While, it is impractical to measure core temperature using physical sensors, implementing a complex estimation strategy in on-board low-cost BMS is challenging due to high computational cost and the cost of implementation. Typically, a temperature estimation scheme consists of a heat generation model and a heat transfer model. Several researchers have already proposed ranges of thermal models having different levels of accuracy and complexity. Broadly, there are first-order and second-order heat capacitor-resistor-based thermal models of lithium-ion batteries (LIBs) for core and surface temperature estimation. This paper deals with a detailed comparative study between these two models using extensive laboratory test data and simulation study to access suitability in online prediction and onboard BMS. The aim is to guide whether it’s worth investing towards developing a second-order model instead of a first-order model with respect to prediction accuracy considering modelling complexity, experiments required and the computational cost. Both the thermal models along with the parameter estimation scheme are modelled and simulated using MATLAB/Simulink environment. Models are validated using laboratory test data of a cylindrical 18650 LIB cell. Further, a Kalman Filter with appropriate process and measurement noise levels are used to estimate the core temperature in terms of measured surface and ambient temperatures. Results from the first-order model and second-order models are analyzed for comparison purposes.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated