Preprint
Review

A Molecular Pinball Machine of the Plasma Membrane Regulates Plant Growth – A New Paradigm

This version is not peer-reviewed.

Submitted:

08 July 2021

Posted:

09 July 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Novel molecular pinball machines of the plasma membrane control cytosolic Ca2+ levels that regulate plant metabolism. [https://youtu.be/zABg7LiBk88] Essential components involve: 1. an auxin-activated proton pump; 2. arabinogalactan glycoproteins (AGPs); 3. Ca2+ channels; 4. auxin-efflux “PIN” proteins. Typical pinball machines release pinballs that trigger various sound and visual effects. However, in plants “proton pinballs” eject Ca2+ bound by paired glucuronic acid residues of numerous glycomodules in periplasmic AGP-Ca2+. Freed Ca2+ ions flow down the electrostatic gradient through open Ca2+ channels into the cytosol thus activating numerous Ca2+-dependent activities.Clearly cytosolic Ca2+ levels depend on activity of the proton pump, the state of Ca2+ channels and size of the periplasmic AGP-Ca2+ capacitor: Proton pump activation is a major regulatory focal point tightly controlled by the supply of auxin: auxin efflux carriers conveniently known as “PIN” proteins [null mutants are pin-shaped!] pump auxin from cell to cell. Mechanosensitive Ca2+ channels and their activation by reactive oxygen species (ROS) are yet another factor regulating cytosolic Ca2+.Cell expansion also triggers proton pump/pinball activity by mechanotransduction of wall stress via Hechtian adhesion thus forming a Hechtian oscillator that underlies cycles of wall plasticity and oscillatory growth.Finally, Ca2+ homeostasis of plants depends on cell surface external storage as source of dynamic Ca2+, unlike the internal ER storage source of animals where the added regulatory complexities ranging from vitamin D to parathormone contrast with the elegant simplicity of plant life. This paper summarises a sixty year Odyssey.
Keywords: 
Subject: 
Biology and Life Sciences  -   Biology and Biotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated