Preprint
Article

High Temperature Superconducting Non-insulation Closed-loop Coils for Electro-dynamic Suspension System

Altmetrics

Downloads

413

Views

429

Comments

1

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

12 July 2021

Posted:

13 July 2021

You are already at the latest version

Alerts
Abstract
Null-flux Electro-dynamic suspension (EDS) system promises to be one of the feasible high-speed maglev systems above 600 km/h. On account of its greater current-carrying capacity, superconducting magnet can provide super-magnetomotive force that is required for null-flux EDS system and cannot be provided by electromagnets and permanent magnets. There is already a relatively mature high-speed maglev technology with low temperature superconducting (LTS) magnets as the core, which works in the liquid helium temperature region (T≤4.2 K). 2-Generation high temperature superconducting (HTS) magnet winded by REBa2Cu3O7−δ (REBCO, RE=rare earth) tapes works above 20 K region and do not need to count on liquid helium which is rare on earth. This paper designed HTS no-insulation closed-loop coils applied for EDS system and energized with persistent current switch. The coils can work at persistent current model and has premier thermal quench self-protection. Besides, a full size double-pancake module was designed and manufactured in this paper, and it was tested in liquid nitrogen. The double-pancake module’s critical current is about 54 A and it is capable of working at persistent current model, whose average decay rate measured in 12 hours is 0.58%/day.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated