Preprint
Review

Self-Replicating RNA Viruses for Vaccine Development Against Infectious Diseases and Cancer

Altmetrics

Downloads

375

Views

614

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

09 July 2021

Posted:

12 July 2021

You are already at the latest version

Alerts
Abstract
Alphaviruses, flaviviruses, measles viruses and rhabdoviruses are enveloped single-stranded RNA viruses, which have been engineered as expression vector systems for recombinant protein expression and vaccine development. Due to the presence of non-structural genes encoding the replicase complex, a 200,000-fold amplification of viral RNA occurs in the cytoplasm of infected cells providing extreme transgene expression levels, which is why they are named self-replicating RNA viruses. Expression of surface proteins of pathogens causing infectious disease and tumor antigens provide the basis for vaccine development against infectious diseases and cancer. The self-replicating RNA viral vectors can be administered as replicon RNA, recombinant viral particles, or layered DNA/RNA replicons. Self-replicating RNA viral vectors have been applied for vaccine development against influenza virus, HIV, hepatitis B virus, human papilloma virus, Ebola virus and recently coronaviruses, especially SARS-CoV-2 the causative agent of the COVID-19 pandemic. Measles virus and rhabdovirus vector-based SARS-CoV-2 vaccine candidates have been subjected to clinical trials. Moreover, RNA vaccine candidates based on self-amplifying alphaviruses have also been evaluated in clinical settings. Various cancers such as brain, breast, lung, ovarian, prostate cancer and melanoma have also been targeted for vaccine development. Robust immune responses and protection have been demonstrated in animal models. Clinical trials have shown good safety and target-specific immune responses. Ervebo, the VSV-based vaccine against Ebola virus disease has been approved for human use.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated