Preprint
Article

Hybrid Carrier Frequency Modulation Based on Rotor Position to Reduce Sideband Vibro-acoustics in PMSM Used by Electric Vehicle

Altmetrics

Downloads

181

Views

238

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

12 July 2021

Posted:

13 July 2021

You are already at the latest version

Alerts
Abstract
In the permanent magnet synchronous motor (PMSM) drive system, the unwilling and ear-piercing vibro-acoustics caused by high-frequency sideband harmonics becomes unacceptable in the electric vehicle application. In this paper, a modified space vector pulse-width modulation (SVPWM) technique implemented with hybrid carrier frequency modulation (HCFM) is provided to reduce the sideband current harmonic components and vibro-acoustic responses. The principle and implementation of the proposed HCFM technique are firstly presented, in which the fixed carrier frequency is improved with the sawtooth and random signal-based coupling modulation based on the rotor position. For verification, the experiment tests are carried out on a prototype 12/10 PMSM and microcontroller unit. The effectiveness of the HCFM technique can hence be confirmed, in which the sideband vibro-acoustics reduction shows more effectively than that in conventional random PWM. The proposed approach may provide a new route in noise-cancelling and electromagnetic compatibility for the electric drive powertrain.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated