Preprint
Review

Beyond Deepfake Technology Fear: On its Positive Uses for Livestock Farming

Altmetrics

Downloads

421

Views

618

Comments

0

This version is not peer-reviewed

Submitted:

14 July 2021

Posted:

14 July 2021

You are already at the latest version

Alerts
Abstract
Deepfake technologies are known for the creation of forged celebrity pornography, face and voice swaps, and other fake media content. Despite the negative connotations the technology bears, the underlying machine learning algorithms have a huge potential that could be applied to not just digital media, but also to medicine, biology, affective science, and agriculture, just to name a few. Due to the ability to generate big datasets based on real data distributions, deepfake could also be used to positively impact non-human animals such as livestock. Generated data using Generative Adversarial Networks, one of the algorithms that deepfake is based on, could be used to train models to accurately identify and monitor animal health and emotions. Through data augmentation, using digital twins, and maybe even displaying digital conspecifics where social interactions are enhanced, deepfake technologies have the potential to increase animal health, emotionality, sociality, animal-human and animal-computer interactions and thereby animal welfare, productivity, and sustainability of the farming industry.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated