Preprint
Article

Deep Convolutional Neural Network Regularization for Alcoholism Detection Using EEG Signals

Altmetrics

Downloads

282

Views

226

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

19 July 2021

Posted:

20 July 2021

You are already at the latest version

Alerts
Abstract
Alcoholism is attributed to regular or excessive drinking of alcohol and leads to the disturbance of the neuronal system in the human brain. This results in certain malfunctioning of neurons that can be detected by an electroencephalogram (EEG) using several electrodes on a human skull at appropriate positions. It is of great interest to be able to classify an EEG activity as that of a normal person or an alcoholic person using data from the minimum possible electrodes (or channels). Due to the complex nature of EEG signals, accurate classification of alcoholism using only a small data is a challenging task. Artificial neural networks, specifically convolutional neural networks (CNN), provide efficient and accurate results in various pattern-based classification problems. In this work, we apply CNN on raw EEG data, and demonstrate how we achieved 98% average accuracy by optimizing a baseline CNN model and outperforming its results in a range of performance evaluation metrics on the UCI-KDD EGG dataset. This article explains the step-wise improvement of the baseline model using the dropout, batch normalization, and kernel regularization techniques, and provides a comparison of the two models that can be beneficial for aspiring practitioners who aim to develop similar classification models in CNN. A performance comparison is also provided with other approaches using the same dataset.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated