Two sets of initial conditions are used in the investigation of capital return rate and carbon storage in boreal forests. Firstly, a growth model is applied in young stands as early as the inventory-based model is applicable. Secondly, the growth model is applied to observed wooded stands. Four sets of thinning schedules are investigated in either case. First, the capital return rate is aspired without any restriction. Second, the number of thinnings is restricted to at most one. Third, thinnings are restricted to the removal of only trees thicker than 237 mm. Fourth, commercial thinnings are omitted. The two sets of initial conditions yield similar results. The capital return rate is a weak function of rotation age, which results in variability in the optimal number of thinnings. Reducing the number of thinnings to one increases timber stock but induces a capital return rate deficiency. The deficiency per excess volume unit is smaller if the severity of any thinning is restricted by the removal of large trees only. Omission of thinnings best applies to spruce-dominated stands with stem count less than 2000/ha. Restricted thinning intensity applies to deciduous stands and dense pine stands. The albedo effect increases the benefits of restricted thinnings and increased clearcuttings instead of contradicting the carbon storage.
Keywords:
Subject: Biology and Life Sciences - Forestry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.