Preprint
Article

Factoring Continuous Characters Defined on Subgroups of Products of Topological Groups

Altmetrics

Downloads

132

Views

226

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

21 July 2021

Posted:

21 July 2021

You are already at the latest version

Alerts
Abstract
We study factorization properties of continuous homomorphisms defined on subgroups (or submonoids) of products of (para)topological groups (or monoids). A typical result is the following one: Let $D=\prod_{i\in I}D_i$ be a product of paratopological groups, $S$ be a dense subgroup of $D$, and $\chi$ a continuous character of $S$. Then one can find a finite set $E\subset I$ and continuous characters $\chi_i$ of $D_i$, for $i\in E$, such that $\chi=\big(\prod_{i\in E} \chi_i\circ p_i\big)\hs1\res\hs1 S$, where $p_i\colon D\to D_i$ is the projection.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated