Preprint
Communication

Rochelle Salt Based Ferroelectric and Piezoelectric Composite Produced with Simple Additive Manufacturing Techniques

Altmetrics

Downloads

494

Views

325

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

20 July 2021

Posted:

21 July 2021

You are already at the latest version

Alerts
Abstract
One century ago, ferroelectricity and then piezoelectricity were discovered using Rochelle salt crystals. Today, modern societies are invited to switch towards a resilient and circular economy model. In this context, this work proposes a method to manufacture piezoelectric devices made from agro-resources such as tartric acid and polylactide significantly reducing the energy budget without requiring any sophisticated equipement. These piezoelectric devices are manufactured by liquid phase epitaxy grown Rochelle salt (RS) crystals into a 3D printed poly(Lactic acid) (PLA) matrix being the artificial squared meshes which mimic the natural wood anatomy. This composite material can easily be produced in any fablab with renewable materials and at low processsing temperatures, reducing then the total energy consumed. Manufactured biodegradable samples are fully recyclable and have good piezoelectric properties without any pooling step. The measured piezoelectric coefficients of manufactured samples are higher than many piezoelectric polymers such as PVDF-TrFE.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated