Preprint
Article

Proximal Policy Optimization for Radiation Source Search

Altmetrics

Downloads

207

Views

259

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

31 July 2021

Posted:

02 August 2021

You are already at the latest version

Alerts
Abstract
Rapid search and localization for nuclear sources can be an important aspect in preventing human harm from illicit material in dirty bombs or from contamination. In the case of a single mobile radiation detector, there are numerous challenges to overcome such as weak source intensity, multiple sources, background radiation, and the presence of obstructions, i.e., a non-convex environment. In this work, we investigate the sequential decision making capability of deep reinforcement learning in the nuclear source search context. A novel neural network architecture (RAD-A2C) based on the actor critic (A2C) framework and a particle filter gated recurrent unit for localization is proposed. Performance is studied in a randomized 20 x 20 m convex and non-convex environment across a range of signal-to-noise ratio (SNR)s for a single detector and single source. RAD-A2C performance is compared to both an information-driven controller that uses a bootstrap particle filter and to a gradient search (GS) algorithm. We find that the RAD-A2C has comparable performance to the information-driven controller across SNR in a convex environment and at lower computational complexity per action. The RAD-A2C far outperforms the GS algorithm in the non-convex environment with greater than 95% median completion rate for up to seven obstructions.
Keywords: 
Subject: Physical Sciences  -   Radiation and Radiography
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated