Preprint
Article

A Note on Stokes Approximations to Leray Solutions of the Incompressible Navier-Stokes Equations in Rn

Altmetrics

Downloads

111

Views

227

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

29 July 2021

Posted:

02 August 2021

You are already at the latest version

Alerts
Abstract
In the early 1980s it was well established that Leray solutions of the unforced Navier-Stokes equations in Rn decay in energy norm for large time. With the works of T. Miyakawa, M. Schonbek and others it is now known that the energy decay rate cannot in general be any faster than t^-(n+2)/4 and is typically much slower. In contrast, we show in this note that, given an arbitrary Leray solution u(.,t), the difference of any two Stokes approximations to the Navier-Stokes flow u(.,t) will always decay at least as fast as t^-(n+2)/4, no matter how slow the decay of || u(.,t) ||_L2 might happen to be.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated