Preprint
Article

Microbiome Assessment of Global Oil Reservoirs Reveals Site-Specific Hydrocarbon Degradation Functional Profiles

Altmetrics

Downloads

365

Views

457

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 July 2021

Posted:

03 August 2021

You are already at the latest version

Alerts
Abstract
Microorganisms inhabiting subsurface petroleum reservoirs are key players in biochemical transformations. The interactions of microbial communities in these environments are highly complex and still poorly understood. This work aimed to assess publicly available metagenomes from oil reservoirs and implement a robust pipeline of genome-resolved metagenomics to deci-pher metabolic and taxonomic profiles of petroleum reservoirs worldwide. Analysis of 301,2 Gb of metagenomic information derived from heavily flooded petroleum reservoirs in China and Alaska to non-flooded petroleum reservoirs in Brazil enabled us to reconstruct 148 MAGs of high and medium quality. At the phylum level, 74% of MAGs belonged to bacteria and 26% to ar-chaea. The profiles of these MAGs were related to the physicochemical parameters and recovery management applied. The analysis of the potential functional core in the reservoirs showed that the microbiota was specialized for each site, with 31.7% of the total KEGG orthologies annotated as functions (1,690 genes) common to all oil fields, while 18% of the functions were site-specific, i.e., present only in one of the oil fields. The oil reservoirs with lower level of intervention were the most similar to the potential functional core, while the oil fields with longer history of water in-jection had greater variation in functional profile. These results show how key microorganisms and their functions respond to the distinct physicochemical parameters and interventions of the oil field operations such as water injection and expand the knowledge of biogeochemical trans-formations in these ecosystems.
Keywords: 
Subject: Biology and Life Sciences  -   Anatomy and Physiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated