Preprint
Article

A Proof of the Riemann Hypothesis Based on MacLaurin Expansion of the Completed Zeta Function

Altmetrics

Downloads

8183

Views

71564

Comments

1

This version is not peer-reviewed

Submitted:

24 September 2021

Posted:

27 September 2021

Read the latest preprint version here

Alerts
Abstract
The basic idea is to expand the completed zeta function $\xi(s)$ in MacLaurin series (infinite polynomial). Thus, by Lemma 3 and Lemma 4, and the fact that $\xi(s)=\xi(1-s)$, a proof of the Riemann Hypothesis can be achieved.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated