The basic idea is to expand the completed zeta function $\xi(s)$ in MacLaurin series (infinite polynomial), which can be further expressed as infinite product (Hadamard product) by conjugate complex roots. Finally, the functional equation $\xi(s)=\xi(1-s)$ leads to $(s-\alpha_i)^2 = (1-s-\alpha_i)^2, i \in \mathbb{N}$ with solution $\alpha_i= \frac{1}{2}, i \in \mathbb{N}$, where $\alpha_i$ are the real parts of the zeros of $\xi(s)$, i.e., $s_i =\alpha_i\pm j\beta_i, i\in \mathbb{N}$. Therefore, a proof of the Riemann Hypothesis is achieved.
Keywords:
Subject:
Computer Science and Mathematics - Algebra and Number Theory
Preprints.org 2023 Most Popular Preprints Award Winner Collection
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.