Preprint
Article

A High-Frequency Phase Feature for the Measurement of Magnetic Permeability Using Eddy Current Sensor

Altmetrics

Downloads

385

Views

244

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

05 August 2021

Posted:

06 August 2021

You are already at the latest version

Alerts
Abstract
Electromagnetic sensing has been used for diverse applications of non-destructive testing, including the surface inspection, measurement of properties, object characterization. However, the measurement accuracy could be significantly influenced by the lift-off between sensors and samples. To address the issue caused by lift-offs, various strategies have been proposed for the permeability measurement of ferromagnetic steels, which mainly involves different sensor designs and signal features (e.g., the zero-crossing feature). In this paper, a single high-frequency scenario for the permeability retrieval is introduced. By combining the signal of two sensing pairs, the retrieval of magnetic permeability is less affected by the lift-off of sensors. Unlike the previous strategy on reducing the lift-off effect (directly taking the phase term out of the integration) using the Dodd-Deeds analytical method, the proposed method is based on a high-frequency linear feature of the phase term. Therefore, this method has the merit of high accuracy and fast processing for the permeability retrieval (a simplified version of Dodd-Deeds analytical formulas after the integration). Experimental measurement has been carried out on the impedance measurement of designed sensors interrogating ferromagnetic dual-phase steels. For sensor lift-offs of up to 10 mm, the error of the permeability retrieval is controlled within 4 % under the optimal frequency.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated