Preprint
Article

In Silico Prediction of siRNA Ionizable-Lipid Nanoparticles in vivo Efficacy: Machine Learning Modeling Based on Formulation and Molecular Descriptors

Altmetrics

Downloads

514

Views

853

Comments

0

Submitted:

09 August 2021

Posted:

11 August 2021

You are already at the latest version

Alerts
Abstract
In silico prediction of the in vivo efficacy of siRNA ionizable-lipid nanoparticles is desirable yet never achieved before. This study aims to computationally predict siRNA nanoparticles in vivo efficacy, which saves time and resources. A data set containing 120 entries was prepared by combining molecular descriptors of the ionizable lipids together with two nanoparticles formulation characteristics. Input descriptor combinations were selected by an evolutionary algorithm. Artificial neural networks, support vector machines and partial least squares regression were used for QSAR modeling. Depending on how the data set is split, two training sets and two external validation sets were prepared. Training and validation sets contained 90 and 30 entries respectively. The results showed the successful predictions of validation set log(dose) with R2val = 0.86 – 0.89 and 0.75 – 80 for validation sets one and two respectively. Artificial neural networks resulted in the best R2val for both validation sets. For predictions that have high bias, improvement of R2val from 0.47 to 0.96 was achieved by selecting the training set lipids lying within the applicability domain. In conclusion, in vivo performance of siRNA nanoparticles was successfully predicted by combining cheminformatics with machine learning techniques.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated