Preprint
Article

Photothermal Effects and Heat Conduction in Nanogranular Silicon Films

Altmetrics

Downloads

161

Views

259

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

16 August 2021

Posted:

17 August 2021

You are already at the latest version

Alerts
Abstract
We present the results on photothermal (PT) and heat conductive properties of nanogranular silicon (Si) films synthesized by evaporation of colloidal droplets (drop-casting) of 100 ± 50 nm sized crystalline Si nanoparticles (NP) deposited on glass substrates. Finite difference time domain (FDTD) and finite element mesh (FEM) modeling of absorbed light intensity and photo-induced spatial temperature distribution across the Si NP films were well correlated with the local temperatures measured by micro-Raman spectroscopy and used for determination of heat conductivities in the films of various thicknesses. Cubic-to-hexagonal phase transition in these films caused by laser heating was found to be heavily influenced by the film thickness and heat conductive properties of glass substrate, on which the films were deposited. Heat conductivities across the drop-casted Si nanogranular films were found to be in the range of lowest heat conductivities of other types of nanostructurely voided Si films due to enhanced phonon scattering across inherently voided topology, weak NP-NP and NP-substrate interface bonding within nanogranular Si films.
Keywords: 
Subject: Physical Sciences  -   Condensed Matter Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated