Preprint
Review

Density-based Descriptors of Redox Reactions Involving Transition Metal Compounds as a Reality-anchored Framework: A Perspective

Altmetrics

Downloads

279

Views

236

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

20 August 2021

Posted:

23 August 2021

You are already at the latest version

Alerts
Abstract
Description of redox reactions is critically important for understanding and rational design of materials for electrochemical technologies including metal-ion batteries, catalytic surfaces, or redox-flow cells. Most of these technologies utilize redox-active transition metal compounds due to their rich chemistry and their beneficial physical and chemical properties for these types of applications. A century since its introduction, the concept of formal oxidation states (FOS) is still widely used for rationalization of the mechanisms of redox reactions, but there exists a well-documented discrepancy between FOS and the electron density-derived charge states of transition metal ions in their bulk and molecular compounds. We summarize our findings and those of others which suggest that density-driven descriptors are in certain cases better suited to characterize the mechanism of redox reactions, especially when anion redox is involved, which is the blind spot of the FOS ansatz.
Keywords: 
Subject: Chemistry and Materials Science  -   Physical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated