Preprint
Article

Changes in Cell Morphology and Actin Organization in Embryonic Stem Cells Cultured Under Different Conditions

Altmetrics

Downloads

260

Views

275

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

20 August 2021

Posted:

23 August 2021

You are already at the latest version

Alerts
Abstract
The cellular cytoskeleton provides the cell with a mechanical rigidity which allows mechanical interaction between cells and the extracellular environment. The actin structure plays a key role in mechanical events like motility, or establishment of cell polarity. From the earliest stages of development, as represented by ex vivo expansion of naïve embryonic stem cells (ESCs), the critical mechanical role of the actin structure is becoming recognized as a vital cue for correct segregation and lineage control of cells and as a regulatory structure that controls several transcription factors. Naïve ESCs have a characteristic morphology and the ultrastructure that underlies this condition remains to be further investigated. Here, we investigate the 3D actin cytoskeleton of naïve mouse ESCs using super resolution optical reconstruction microscopy (STORM). We investigate the morphological, cytoskeletal and mechanical changes in cells cultured in 2i or Serum/LIF media reflecting a homogenous preimplantation cell state and a state that is closer to embarking on differentiation. STORM imaging showed that the peripheral actin structure undergoes a dramatic change between the two media conditions. We also detected micro-rheological differences in the cell periphery between the cells cultured in these two media correlating well with the observed nano-architecture of the ESCs in the two different culture conditions. These results pave the way for linking physical properties and cytoskeletal architecture to cell morphology during early development.
Keywords: 
Subject: Physical Sciences  -   Biophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated