Preprint
Article

ON THE ROLE OF MATRIX-WEIGHTS ELEMENTS IN CONSENSUS ALGORITHMS FOR MULTI-AGENT SYSTEMS

Altmetrics

Downloads

615

Views

667

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

20 August 2021

Posted:

23 August 2021

You are already at the latest version

Alerts
Abstract
This paper extends the concept of weighted graphs to matrix weighted graphs. The consensus algorithms dictate that all agents reach consensus when the weighted graph is connected. However, it is not always the case for matrix weighted graphs. The conditions leading to different types of consensus have been extensively analysed based on the properties of matrix-weighted Laplacians and graph theoretic methods. However, in practice, there is concern on how to pick matrix-weights to achieve some desired consensus, or how the change of elements in matrix weights affects the consensus algorithm. By selecting the elements in the matrix weights, different clusters may be possible. In this paper, we map the roles of the elements of the matrix weights in the systems consensus algorithm. We explore the choice of matrix weights to achieve different types of consensus and clustering. Our results are demonstrated on a network of three agents where each agent has three states.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated