Preprint
Article

Short Word-Length Entering Compressive Sensing Domain: Improved Energy-Efficiency in Wireless Sensor Networks

Altmetrics

Downloads

603

Views

790

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

30 August 2021

Posted:

30 August 2021

You are already at the latest version

Alerts
Abstract
This work combines compressive sensing and short word-length techniques to achieve localization and target tracking in wireless sensor networks with energy-efficient communication between the network anchors and the fusion center. Gradient descent localization is performed using time-of-arrival (TOA) data which are indicative of the distance between anchors and the target thereby achieving range-based localization. The short word-length techniques considered are delta modulation and sigma-delta modulation. The energy efficiency is due to the reduction of the data volume transmitted from anchors to the fusion center by employing any of the two delta modulation variants with compressive sensing techniques. Delta modulation allows the transmission of one bit per TOA sample. The communication energy efficiency is increased by RⱮ, R≥1, where R is the sample reduction ratio of compressive sensing and Ɱ is the number of bits originally present in a TOA-sample word. It is found that the localization system involving sigma-delta modulation has a superior performance to that using delta-modulation or pure compressive sampling alone, in terms of both energy efficiency and localization error in the presence of TOA measurement noise, owing to the noise shaping property of sigma-delta modulation.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated