Preprint
Article

Predictive Maintenance: An Autoencoder Anomaly-based Approach for a 3 DoF Delta Robot

Altmetrics

Downloads

436

Views

331

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

06 September 2021

Posted:

06 September 2021

You are already at the latest version

Alerts
Abstract
Performing predictive maintenance (PdM) is challenging for many reasons. Dealing with large datasets which may not contain run-to-failure data (R2F) complicates PdM even more. When no R2F data are available, identifying condition indicators (CIs), estimating the health index (HI), and thereafter, calculating a degradation model for predicting the remaining useful lifetime (RUL) are merely impossible using supervised learning. In this paper, a 3 dof delta robot used for pick and place task is studied. In the proposed method, autoencoders (AEs) are used to predict when maintenance is required based on the signal sequence distribution and anomaly detection, which is vital when no R2F data is available. Due to the sequential nature of the data, non-linearity of the system, and correlations between parameter time series, convolutional layers are used for feature extraction. Thereafter, a sigmoid function is used to predict the probability of having an anomaly given CIs acquired from AEs. This function can be manually tuned given the sensitivity of the system or optimized by solving a minimax problem. Moreover, the proposed architecture can be used for fault localization for the specified system. Additionally, the proposed method is capable of calculating RUL using Gaussian process (GP), as a degradation model, given HI values as its input.
Keywords: 
Subject: Engineering  -   Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated