In this work, Gaussian Tribonacci functions are defined and investigated on the set of real numbers $\mathbb{R},$ \textit{i.e}., functions $f_{G}$ $:$ $\mathbb{R}\rightarrow \mathbb{C}$ such that for all $% x\in \mathbb{R},$ $n\in \mathbb{Z},$ $f_{G}(x+n)=f(x+n)+if(x+n-1)$ where $f$ $:$ $\mathbb{R}\rightarrow \mathbb{R}$ is a Tribonacci function which is given as $f(x+3)=f(x+2)+f(x+1)+f(x)$ for all $x\in \mathbb{R}$. Then the concept of Gaussian Tribonacci functions by using the concept of $f$-even and $f$-odd functions is developed. Also, we present linear sum formulas of Gaussian Tribonacci functions. Moreover, it is showed that if $f_{G}$ is a Gaussian Tribonacci function with Tribonacci function $f$, then $% \lim\limits_{x\rightarrow \infty }\frac{f_{G}(x+1)}{f_{G}(x)}=\alpha \ $and\ $\lim\limits_{x\rightarrow \infty }\frac{f_{G}(x)}{f(x)}=\alpha +i,$ where $% \alpha $ is the positive real root of equation $x^{3}-x^{2}-x-1=0$ for which $\alpha >1$. Finally, matrix formulations of Tribonacci functions and Gaussian Tribonacci functions are given. In the literature, there are several studies on the functions of linear recurrent sequences such as Fibonacci functions and Tribonacci functions. However, there are no study on Gaussian functions of linear recurrent sequences such as Gaussian Tribonacci and Gaussian Tetranacci functions and they are waiting for the investigating. We also present linear sum formulas and matrix formulations of Tribonacci functions which have not been studied in the literature.
Keywords:
Subject: Computer Science and Mathematics - Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.