Preprint
Article

Diffusion Analysis With High and Low Concentration Regions by Finite Difference Method, Adaptive Network-Based Fuzzy Inference System, and Bilayered Neural Network Method

Altmetrics

Downloads

191

Views

242

Comments

0

Submitted:

07 September 2021

Posted:

09 September 2021

You are already at the latest version

Alerts
Abstract
The diffusion of molecules in aqueous solutions in the domain of membrane technology is very critical in the efficiency of chemical engineering and purification processes. In this study, the diffusion in high and low concentration regions is simulated with finite difference method (FDM), and then the results of numerical computations are coupled with adaptive network-based fuzzy inference system (ANFIS) and bilayered neural network method (BNNM). Machine learning approach can individually predict diffusion phenomena across the domain based on understanding of the machine instead of the discretization of an ordinary differential equation (ODE). The findings of the machine learning method are in good agreement with those of FDM at different times of the simulation. In addition to numerical computation, the error of the system is computed for different iterations. The results show that by increasing the number of iterations and training datasets, all errors reduce significantly for both training and testing. BNN method is also used to train the prediction process of diffusion for a more accurate comparison. This technique is similar to ANFIS method in terms of prediction capability. According to the findings, ANFIS approach predicts diffusion slightly better than BNN method. In this regard, ANFIS technique produces R>0.99 while BNN method produces R around 0.98. Both machine learning methods are accurate enough to predict diffusion throughout the domain for different time steps. The computational time for both algorithms is less than that of FDM method to predict low and high concentrations in the domain. Besides, based on the results, artificial intelligence (AI) can find the relationship between inputs and outputs and determine which input has the main influence on the output in this study to optimize the process. As such, future studies can be focused on AI and other methods for faster prediction and optimization processes.
Keywords: 
Subject: Engineering  -   Chemical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated