Preprint
Article

MPCR-Net: Multiple Partial Point Clouds Registration Network Using a Global Template

Altmetrics

Downloads

171

Views

264

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

09 September 2021

Posted:

10 September 2021

You are already at the latest version

Alerts
Abstract
With the advancement of photoelectric technology and computer image processing technology, the visual measurement method based on point clouds is gradually applied to the 3D measurement of large workpieces. Point cloud registration is a key step in 3D measurement, and its registration accuracy directly affects the accuracy of 3D measurements. In this study, we designed a novel MPCR-Net for multiple partial point cloud registration networks. First, an ideal point cloud was extracted from the CAD model of the workpiece and was used as the global template. Next, a deep neural network was used to search for the corresponding point groups between each partial point cloud and the global template point cloud. Then, the rigid body transformation matrix was learned according to these correspondence point groups to realize the registration of each partial point cloud. Finally, the iterative closest point algorithm was used to optimize the registration results to obtain a final point cloud model of the workpiece. We conducted point cloud registration experiments on untrained models and actual workpieces, and by comparing them with existing point cloud registration methods, we verified that the MPCR-Net could improve the accuracy and robustness of the 3D point cloud registration.
Keywords: 
Subject: Engineering  -   Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated