Distortion of financial statements is recognized as one of the most important issues in the field of accounting and auditing, which is also one of the most common issues today. In this regard, the present research was conducted, in which stock exchange information was used to investigate, predict, and model accounting distortions. For this purpose, financial performance, non-financial metrics, market-based metrics and commitment, or selection items were reviewed over a 6-year period. For collecting data of distorting companies, database of the Society of Certified Public Accountants in Iran was used and the information was analyzed using data mining methods (decision tree, neural networks, and Bayesian method). The results showed that analysis of financial statements҆ information has a high accuracy in determining and identifying the distorted financial statements. Using this information, it is possible to get better acquainted with the methods of document distortion and to take necessary measures in order to control and prevent administrative violations at national and international levels. Given frequent occurrence of these violations, artificial intelligence models can be used to identify these papers.
Keywords:
Subject: Business, Economics and Management - Accounting and Taxation
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.