Preprint
Article

Enabling Year-round Cultivation in the Nordics - Agrivoltaics and Adaptive LED Lighting Control of Daily Light Integral

Altmetrics

Downloads

350

Views

290

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

20 September 2021

Posted:

21 September 2021

You are already at the latest version

Alerts
Abstract
High efficacy LED lamps combined with adaptive lighting control and greenhouse integrated photovoltaics (PV) could enable the concept of year-round cultivation and become a feasible option even in the harsh climate of the Nordic countries. Meteorological satellite data of this region was analyzed in a parametric study to evaluate the potential of these technologies. The generated maps showed monthly average temperatures fluctuating from -20°C to 20°C throughout the year. The natural photoperiod and light intensity also changed drastically, resulting in monthly average daily light integral (DLI) levels ranging from 45-50 mol·m-2·d-1 in summer and contrasting with 0-5 mol·m-2·d-1 during winter. To compensate, growth room cultivation independent from outdoor conditions could be used in winter. Depending on the efficacy of the lamps, the electricity required for sole-source lighting at 300 µmol·m-2·s-1 for 16 hours would be between 1.4 and 2.4 kWh·m-2·d-1. Greenhouses with supplementary lighting could help start the cultivation earlier in spring and extend it further into autumn. The energy required for lighting highly depends on several factors such as the natural light transmittance, the light threshold settings and the lighting control protocol, resulting in electric demands between 0.6 and 2.4 kWh·m-2·d-1. Integrating PV on the roof or wall structures of the greenhouse could offset some of this electricity, with specific energy yields ranging from 400 to 1120 kWh·kWp-2·yr-1 depending on the region and system design.
Keywords: 
Subject: Biology and Life Sciences  -   Agricultural Science and Agronomy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated